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Brownian motion with absolute negative mobility
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An example of Brownian motion with absolute negative mobility is given and analytically studied in a
random walk and diffusion model.
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[. INTRODUCTION tion of the force, hence negative mobility, is observed. We
will show below that this is indeed the case. It should also be
Applying an(smal) external force on a macroscopic sys- clear that the above described mechanism is rather general
tem at equilibrium cannot induce a net motion in this systerrind can be realized by many other similar constructions. One
opposite to the force. Indeed, such a motion would implysuch example with continuous space will be analyzed in full
that a single heat bath can cyclically transform internal enanalytic detail in Sec. llI, see Fig. 3.
ergy into work in violation of the second lajit]. Similarly,

a Brownian particle in a system at equilibrium cannot move Il. RANDOM WALK MODEL
in a direction opposite to a small external force, as made . o . o
explicit by the positivity of its mobilityu=kgT/D. When The three-layer lattice represented in Fig. 1 is a periodic

the reference system is not at equilibrium, negative mobilityrepetition of a 3<3 unit cell. The position of a particle in
becomes possible. Examples include electrical networks witkhis lattice is thus specified by the following coordinates: the
nonequilibrium elements such as an amplifier leading tcsite numberi {1,2,3}, the horizontal layero e{—,0,+},
negative electric mobility2], and the more prosaic example and the cell number e Z. Assuming that the sites have a
of the Brazil nut probleni3] in which a heavy large particle linear dimension equal to 1, the corresponding position along
surrounded by lighter and smaller particles can move upthe horizontak axis isx(; =i+ 3l. The probability to find
wards, against the gravitational force, when the vessel thdhe particle at positiofi,o,|] at timet will be denoted by
contains the particles is shaken. For small Brownian entitiesPy; . 3(t)-

negative mobility is by now also well documented in a num- A particle can jump between nearest neighbor sites, as
ber of theoretical investigatiorjg—7], but it has so far not indicated by the arrows. The transition rates are chosen as
been experimentally observed. The purpose of the presefllows: In the vertical direction, i.e., for allowed transitions
paper is to use a different model for Brownian negative mo-between different layers, the rates are equalytoln the
bility, which has the advantage that it could be easily realizedhorizontal direction, the rates are given as

experimentally. Note that the construction from Rf] is

presently the subject of an experimental verification, but in ki =e ABTRZ  k* =eB(BFF)2
this model the reference nonequilibrium state is, in contrast
to ours, not a steady state because it requires the application KO =g BF2 |0 — gBF2.

of time oscillatory forcing.

We start by explaining the intuitive idea behind the mode
of operation of our system by focusing on a discrete random
walk model. A Brownian particle performs a random walk on
the three-layer lattice represented in Fig. 1, which is aligned’he arrows in the subscripts- and— denote transitions to
along thex axis. In the upper and lower layers, the motion of the left and to the right, respectively. The fact@&andF are
the particle is biased along, but in opposite directions the energy differences between neighboring sites along the
(+x and —x direction for upper layer and lower layer, re- axis as a result of the applied bias B, 0, and—B in the
spectively and with equal amplitude. Transitions betweenupper, middle, and lower layers, respectiyeayd the exter-
these layers are possible by hopping across the intermediate
layer. The latter consists of pockets of three states with ac-
cess to the upper and lower layers located at the left- and
right-hand sides of these pockets, respectively. All the corre-
sponding transitions are unbiased. The overall symmetry thus
dictates that the random walker will not acquire a systematic
speed along the axis. Upon application of an external force,
however, say along the x direction, the walker will prefer- i
entially reside in the right-hand side of the pockets, facilitat- 1 : R X
ing the entry into the lower layer where the motion however
is biased into the—x direction. One can expect that when  FIG. 1. Representation of the three-layer lattice. Particles can
this bias is sufficiently large, a net motion against the direcjump between nearest neighbor sites across the dotted lines.

k;:e*ﬁ(*B‘FF)/Z, k;:eﬁ(fBJrF)/Z_ (1)
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FIG. 2. Plot of the mobilityw as a function of the biaB. The ) ) ] ]
inset shows (F) for B=2 (8=1). FIG. 3. Schematic representation of the different states and their

transitions in the diffusion model. The potential \§x) = cos)
nal force (applied in all layers respectively. The resulting +coS(X).
master equation describing the time evolutiorPgf,, ;(t) is . ) .
reproduced in the Appendix. Figure 2 shows a plot oft as a function of the biaB. For
Our focus here is on the asymptotic transport propertieyalues ofB larger then In(3)8, u becomes negative. Close to

and, more specifically, on the asymptotic average horizontgquilibrium, i.e., for small values d8, the mobility is posi-
velocity v: tive, as required by the fluctuation dissipation theorem.

(x(1)) @ IIl. DIFFUSION MODEL

=lim ,
v t

e To formulate a spatially continuous analog, we consider
an overdamped Brownian particle possessing a discrete de-
gree of freedonmr=—1,0, or+1, and moving along th&
s axis in a one-dimensional potentid, (x)=V(x)— oXB,
(A1), we obtain with V(x) spatially periodic with periodL, V(x+L)
. + _ _ =V(x). Unbiased transitions can take place between the dis-
v=3(KLP3,+)=KPpa,)) +3(Ko Py =k Ppa-p), crete states, but only at specific positions, namejynodulo
L betweenoc=0 ando=+1 andx; moduloL betweeno
where P ,;=lim 3Py, (1) is the steady state prob- =0 ando=—1, cf. Fig. 3. We proceed to find the average
- ) o velocity along thex axis upon application of an additional
ability for a particle to be at any of the sitésn layero.  fqrce F that is independent of the discrete state. As in the
Calculation of theP(; ,) can be reduced to an algebraic prob- giscrete model, the position of a particle is completely deter-
lem (see the Appendix and gives the following result: mined by the coordinatese [0,L[, the state variable, and

the cell numbet. The probability to find the particle in state

with <X(t)>:Ei,(r,lx[i,(r,l]P[i,u’,l](t)' ReWriting this asv
=lim,__(d/at)(x(t)) and using the master equation, cf. Eq.

- BF
p. - Poe # P = Po o at positionx+IL is Py, , (). As before, we define
BO g e prer TRy o ARy ohF
L
P efF 1 <X(t)>:2l fo dX(X+IL)P[x,o,I](t)’
0 a,
P[3'°]:—1+e*BF+eBF’ Pris1=3P=. (4)
. d
Here, P, is the reduced probability to be in staie UZJ'”:CE(X(U), ®
¥ BF —BF 4 aBF
P. 3e lre 7 +e (5)  and find[see the Appendix, and compare with E8)] that

R .
S it4e FFraeft ° 144e FFraefF

Combined with Eq(3), we obtain the final result v= LE N 9

3e ABHF)2(g36F 1 oB(B+F) _ gB(BH+2F) _ 1)
v= . (6 withJ,= Iimtﬂmzﬂ[xyg,,](t) the steady state probability cur-

rent in stateo, given as

4+ ePF+4e?fF

The corresponding mobility: is
kBT[ 1—e~ (F +0'B)L/I<BT]
_ v ( F) 1 ‘J(r: Po’ ’

= F:O=§Be“”5’2(3—e55). 7 f:%(y)dy

055101-2



RAPID COMMUNICATIONS

BROWNIAN MOTION WITH ABSOLUTE NEGATIVE . .. PHYSICAL REVIEW E 67, 055101R) (2003
V(F)/L o o °
0.2 / (0] (0]
0.1 B=1.0 o-—— o0 (o)
0.0 B=3.0 ° — (0}
. X
-0.1 B=4.0 . . .
FIG. 5. The arrows represent the hydrodynamic flow in which
-0.2 the suspended particles, represented by the dots, move. Upon appli-
P 5 oo 5 5 oF cation of an external force on these particles, for example, in the

+x direction, transitions to the lower layer are more likely, result-
FIG. 4. The average speedF) as a function of the applied ing in negative mobility if the flow is sufficiently strong.
force F for different values of the biaB [ V(x) =cos§)+cos(X)].
The circles forB=4 were obtained by numerical simulations. freedom analogous t@ is here the angl@ e[ — 7, 7] of the
particles’ dipole axis with the vertical directiofmeasured
clockwise. For a given value of), particles acquire an av-
erage velocity whose horizontat component isuv(6)
=(mg/2)(u, — p)sin(26), where u, and w are the or-
P, are the probabilities to be in stateand follow from Eq.  thogonal ¢= = 7/2) and parallel §=0 or = 7) mobilities,
(A6) and normalizatioP_ +Py+P,=1: respectively. The motion is biased to the left and right, re-
spectively, depending on whethér-0 or 6<0, see Fig. 6.

x+L
q)g(x):f dyd Vo) =Ve()~Fy=x))/kgT (10
X

[ (L Thesed values are the analogs of the two oppositely biased
P-=Z fo ®_(y)dy|Po(x1) P+ (Xo), states in the basic model. Transitions between different
angles occur as a result of rotational diffusion. Because of
1 L symmetry, positive and negativevalues are equally likely
PO=Z<D,(X1) j Do(y)dy | D (Xp), and the resulting average drift is zero. The crucial observa-
0 tion is now that the application of an additional electric field

. along thex axis will favor the internal staté that is charac-
J @, (y)dy|. (11) terized by a motion induced by the gravitational field in the
o opposite direction; hence, negative mobility is expected if

this effect is larger than the direct response to the electric
The above results are valid for any choice of the potentiaforce.

and the transition points. To reproduce a situation leading to

negative mobility, similar in spirit to that of the discrete

model, we choose a symmetric potenthi(x) with two APPENDIX

minima, playing a role akin to the left and right states in the The time evolution of the probabilitp; ,;(t) is de-

pockets of layer O in the discrete model. They are separateskribed by the following master equation:
from each other on one side by a high maximum, mimicking

the absence of transitions frojd,0)] and[3,0)] to [3,0]
—1] and[1,0] + 1], respectively, in the discrete model, and
a low maximum analogous to the stafes0/]. It is now +k Py (O + Y Ppog(t) =P+t
also clear as how to choose the points of transixigandx;,
namely, at the location of the two minima. For the purpose of Lt Lt +
illustration, we will useV(x)=cosk)+cos(X), and the re- P2+ (0= = (Ko AKE)P, (O KP4 (1)
sulting construction is schematically represented in Fig. 3. +k* Pia.+ (1),

The appearance of negative mobility for sufficiently large n

biasB is illustrated in Fig. 4, showing as a function of the

1
P =Z<I>_(X1)<D0(Xo)

P+ () =—(kZ+K )P4 (1) +K P34 - 13(1)

external forcer for different values of the biaB. Q ]—E' Eo
0= L€z
IV. DISCUSSION Vi) ©
"""""""""""" —_— — —
While there are undoubtedly several direct physical real- ; ﬁ_ , E=Ee,
izations of the basic idea presented here, the most straigth- ~—— ’ -
forward being particles suspended in the hydrodynamic flow v(6) ﬁ &
represented in Fig. 5, we conclude with a more surprising il > X

concoction. Consider ellipsoidal particles with a permanent

dipole and massn, sedimenting under the influence of a  FIG. 6. The application of an additional electric fifdinduces
gravitational force in the presence of an electric force actingreferential transitions to the configurations that move in the oppo-
in the vertical but upward direction. The internal degree ofsite direction.
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Pz ()=~ (K +kD)Pg i () +K P (1)
+K Py 41y(D),
9P10i(1)= =K P01 () + K2 Ppaoy3 () + Y[ Ppps 3 (1)
—Pr1o(H]
P01 (1) == (K2 + K% ) Pp2011(1) + K%, Py 01(t)
+kgp[3,o,|](t),
3{Pz,0()=— |<OJ3[3,0,|]('[)ﬂL k°, P20 () + v Pz 1(H)
—Pzo(H)],
P,— () =—(k_+k)Pp - () +kZ Pz - 15(t)
+k_ P (D),
P (1) =—=(K_+K_ )Pz () +kZ Py, 3(t)
+k_Pz— (b,
Pz n()=—(K_+k_)Pz_ j(1) Tk P ;1(1)

TP+ 142)(0) + [Pz op(t)
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peated for more complex spatially periodic structures includ-
ing the calculation of both asymptotic velocity and diffusion
coefficient, cf. Ref[8].

For a continuous space, we proceed in a similar way. The
probability P, . ;(t) obeys the master equation

P+ .11(0) == I+ (D 1 (1),
3tPx,011 (1) = = I x011 (D) = T+ 11 (1) = T, — iy (1),
Py, 111 ==, Jx -1 (O 1 - (1), (A3)
whereJ;, ,1(t) is the probability current in state,
o] (D= —[Vo(X) = F+KgT P »17(1)  (A4)

andr, - ;;(t) is the net probability flux from state O to state
+ at positionx+IL, as a result of the localized transitions
between the different states:

Mix,+ 11 (D)= ¥8(X=X0) [ Prx 001 (1) = Py + (D 1,

Mix,— 11 (0= ¥8(X=X)[ Py, 001 (1) = P, — (D]
(A5)

As before Py ,=1lim 3P, , ;(1) is found by summing

t—o
both sides of the master equation oVeand taking the limit
t—oo. The total net fluxe$[xyt]=Iimtﬂm2|r[xvt,,](t) must

—Pp- (0] (A1)

Summing both sides of the master equation dvgields a
closed set of nine coupled equations for the reduced prob-
abilities Py ,1(t)=ZPy; ,1;(t). The latter quantities ap-
proach steady state values in the long time litaitoo. In

vanish, so that
P[XO,O]: P[X0,+] and P[leo]: P[Xl’,] . (A6)

The result forPy, ,; reads

particular, the total net probability flux between the horizon- D (x)
tal layers must vanish, implying Pxol=Porr— (A7)
f P,(y)dy
Pl,+1=Pp,0 and Pzo=Ps ;. (A2) 0

With these conditions, the set of nine equations decouple int9here® ,(x) andP,, are given in Eqs(10) and(11), respec-
three independent sets, one for each layer. Their unique sévely. Finally, J, is obtained from

lution is found by including the conditioB;P[; ,;=P,. The J =—TaV —E+kaT3.1P A8
latter can be determined by using HE&2) and the overall o=~ LVs(x) BT P (A8)
normalization 2 ,P,=1. This procedure can also be re- leading to the result given in E¢10).
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