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Brownian motion with absolute negative mobility
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Limburgs Universitair Centrum, B-3590 Diepenbeek, Belgium

~Received 13 February 2003; published 27 May 2003!

An example of Brownian motion with absolute negative mobility is given and analytically studied in a
random walk and diffusion model.

DOI: 10.1103/PhysRevE.67.055101 PACS number~s!: 02.50.2r, 05.40.2a
s-
em
pl
en

v
d

lit
i
t

le

up
th
ie
m

se
o
e

t i
a
at

de
o
on
e
o

-
en
di
a
an
rre
th
at
e,

at
e
n
ec

e
be
eral
ne

full

dic

he

a
ng

as
as

s

he

can
I. INTRODUCTION

Applying an~small! external force on a macroscopic sy
tem at equilibrium cannot induce a net motion in this syst
opposite to the force. Indeed, such a motion would im
that a single heat bath can cyclically transform internal
ergy into work in violation of the second law@1#. Similarly,
a Brownian particle in a system at equilibrium cannot mo
in a direction opposite to a small external force, as ma
explicit by the positivity of its mobilitym5kBT/D. When
the reference system is not at equilibrium, negative mobi
becomes possible. Examples include electrical networks w
nonequilibrium elements such as an amplifier leading
negative electric mobility@2#, and the more prosaic examp
of the Brazil nut problem@3# in which a heavy large particle
surrounded by lighter and smaller particles can move
wards, against the gravitational force, when the vessel
contains the particles is shaken. For small Brownian entit
negative mobility is by now also well documented in a nu
ber of theoretical investigations@4–7#, but it has so far not
been experimentally observed. The purpose of the pre
paper is to use a different model for Brownian negative m
bility, which has the advantage that it could be easily realiz
experimentally. Note that the construction from Ref.@7# is
presently the subject of an experimental verification, bu
this model the reference nonequilibrium state is, in contr
to ours, not a steady state because it requires the applic
of time oscillatory forcing.

We start by explaining the intuitive idea behind the mo
of operation of our system by focusing on a discrete rand
walk model. A Brownian particle performs a random walk
the three-layer lattice represented in Fig. 1, which is align
along thex axis. In the upper and lower layers, the motion
the particle is biased alongx, but in opposite directions
(1x and 2x direction for upper layer and lower layer, re
spectively! and with equal amplitude. Transitions betwe
these layers are possible by hopping across the interme
layer. The latter consists of pockets of three states with
cess to the upper and lower layers located at the left-
right-hand sides of these pockets, respectively. All the co
sponding transitions are unbiased. The overall symmetry
dictates that the random walker will not acquire a system
speed along thex axis. Upon application of an external forc
however, say along the1x direction, the walker will prefer-
entially reside in the right-hand side of the pockets, facilit
ing the entry into the lower layer where the motion howev
is biased into the2x direction. One can expect that whe
this bias is sufficiently large, a net motion against the dir
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tion of the force, hence negative mobility, is observed. W
will show below that this is indeed the case. It should also
clear that the above described mechanism is rather gen
and can be realized by many other similar constructions. O
such example with continuous space will be analyzed in
analytic detail in Sec. III, see Fig. 3.

II. RANDOM WALK MODEL

The three-layer lattice represented in Fig. 1 is a perio
repetition of a 333 unit cell. The position of a particle in
this lattice is thus specified by the following coordinates: t
site numberi P$1,2,3%, the horizontal layersP$2,0,1%,
and the cell numberI PZ. Assuming that the sites have
linear dimension equal to 1, the corresponding position alo
the horizontalx axis isx[ i ,s,I ]5 i 13I . The probability to find
the particle at position@ i ,s,I # at time t will be denoted by
P[ i ,s,I ] (t).

A particle can jump between nearest neighbor sites,
indicated by the arrows. The transition rates are chosen
follows: In the vertical direction, i.e., for allowed transition
between different layers, the rates are equal tog. In the
horizontal direction, the rates are given as

k←
1 5e2b(B1F)/2, k→

1 5eb(B1F)/2;

k←
0 5e2bF/2, k→

0 5ebF/2;

k←
2 5e2b(2B1F)/2, k→

2 5eb(2B1F)/2. ~1!

The arrows in the subscripts← and→ denote transitions to
the left and to the right, respectively. The factorsB andF are
the energy differences between neighboring sites along tx
axis as a result of the applied bias (1B, 0, and2B in the
upper, middle, and lower layers, respectively! and the exter-

FIG. 1. Representation of the three-layer lattice. Particles
jump between nearest neighbor sites across the dotted lines.
©2003 The American Physical Society01-1
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nal force ~applied in all layers!, respectively. The resulting
master equation describing the time evolution ofP[ i ,s,I ] (t) is
reproduced in the Appendix.

Our focus here is on the asymptotic transport proper
and, more specifically, on the asymptotic average horizo
velocity v:

v5 lim
t→`

^x~ t !&
t

, ~2!

with ^x(t)&5( i ,s,Ix[ i ,s,I ] P[ i ,s,I ] (t). Rewriting this as v
5 lim

t→`
(]/]t)^x(t)& and using the master equation, cf. E

~A1!, we obtain

v53~k→
1 P[3,1]2k←

1 P[1,1] !13~k→
2 P[3,2]2k←

2 P[1,2] !,
~3!

where P[ i ,s]5 lim
t→`

( I P[ i ,s,I ] (t) is the steady state prob

ability for a particle to be at any of the sitesi in layer s.
Calculation of theP[ i ,s] can be reduced to an algebraic pro
lem ~see the Appendix!, and gives the following result:

P[1,0]5
P0e2bF

11e2bF1ebF
, P[2,0]5

P0

11e2bF1ebF
,

P[3,0]5
P0ebF

11e2bF1ebF
, P[ i ,6]5

1

3
P6 . ~4!

Here,Ps is the reduced probability to be in states:

P65
3e7bF

114e2bF14ebF
, P05

11e2bF1ebF

114e2bF14ebF
. ~5!

Combined with Eq.~3!, we obtain the final result

v5
3e2b(B1F)/2~e3bF1eb(B1F)2eb(B12F)21!

41ebF14e2bF
. ~6!

The corresponding mobilitym is

m5
]v~F !

]F U
F50

5
1

3
be2bB/2~32ebB!. ~7!

FIG. 2. Plot of the mobilitym as a function of the biasB. The
inset showsv(F) for B52 (b51).
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Figure 2 shows a plot ofm as a function of the biasB. For
values ofB larger then ln(3)/b, m becomes negative. Close t
equilibrium, i.e., for small values ofB, the mobility is posi-
tive, as required by the fluctuation dissipation theorem.

III. DIFFUSION MODEL

To formulate a spatially continuous analog, we consid
an overdamped Brownian particle possessing a discrete
gree of freedoms521,0, or 11, and moving along thex
axis in a one-dimensional potentialVs(x)5V(x)2sxB,
with V(x) spatially periodic with periodL, V(x1L)
5V(x). Unbiased transitions can take place between the
crete states, but only at specific positions, namely,x0 modulo
L betweens50 ands511 andx1 modulo L betweens
50 ands521, cf. Fig. 3. We proceed to find the averag
velocity along thex axis upon application of an additiona
force F that is independent of the discrete state. As in
discrete model, the position of a particle is completely de
mined by the coordinatesxP@0,L@ , the state variables, and
the cell numberI. The probability to find the particle in stat
s at positionx1IL is P[x,s,I ] (t). As before, we define

^x~ t !&5(
s,I

E
0

L

dx~x1IL !P[x,s,I ]~ t !,

v5 lim
t→`

]

]t
^x~ t !&, ~8!

and find@see the Appendix, and compare with Eq.~3!# that

v5L(
s

Js , ~9!

with Js5 lim
t→`

( IJ[x,s,I ] (t) the steady state probability cur

rent in states, given as

Js5Ps

kBT@12e2(F1sB)L/kBT#

E
0

L

Fs~y!dy

,

FIG. 3. Schematic representation of the different states and t
transitions in the diffusion model. The potential isV(x)5cos(x)
1cos(2x).
1-2
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Fs~x!5E
x

x1L

dye[Vs(y)2Vs(x)2F(y2x)]/kBT. ~10!

Ps are the probabilities to be in states and follow from Eq.
~A6! and normalizationP21P01P151:

P25
1

Z F E
0

L

F2~y!dyGF0~x1!F1~x0!,

P05
1

Z
F2~x1!F E

0

L

F0~y!dyGF1~x0!,

P15
1

Z
F2~x1!F0~x0!F E

0

L

F1~y!dyG . ~11!

The above results are valid for any choice of the poten
and the transition points. To reproduce a situation leadin
negative mobility, similar in spirit to that of the discre
model, we choose a symmetric potentialV(x) with two
minima, playing a role akin to the left and right states in t
pockets of layer 0 in the discrete model. They are separ
from each other on one side by a high maximum, mimick
the absence of transitions from@1,0,I # and @3,0,I # to @3,0,I
21# and@1,0,I 11#, respectively, in the discrete model, an
a low maximum analogous to the states@2,0,I #. It is now
also clear as how to choose the points of transitionx0 andx1,
namely, at the location of the two minima. For the purpose
illustration, we will useV(x)5cos(x)1cos(2x), and the re-
sulting construction is schematically represented in Fig
The appearance of negative mobility for sufficiently lar
biasB is illustrated in Fig. 4, showingv as a function of the
external forceF for different values of the biasB.

IV. DISCUSSION

While there are undoubtedly several direct physical re
izations of the basic idea presented here, the most stra
forward being particles suspended in the hydrodynamic fl
represented in Fig. 5, we conclude with a more surpris
concoction. Consider ellipsoidal particles with a perman
dipole and massm, sedimenting under the influence of
gravitational force in the presence of an electric force act
in the vertical but upward direction. The internal degree

FIG. 4. The average speedv(F) as a function of the applied
force F for different values of the biasB @V(x)5cos(x)1cos(2x)#.
The circles forB54 were obtained by numerical simulations.
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freedom analogous tos is here the angleuP@2p,p# of the
particles’ dipole axis with the vertical direction~measured
clockwise!. For a given value ofu, particles acquire an av
erage velocity whose horizontalx component is v(u)
5(mg/2)(m'2m i)sin(2u), where m' and m i are the or-
thogonal (u56p/2) and parallel (u50 or 6p) mobilities,
respectively. The motion is biased to the left and right,
spectively, depending on whetheru.0 or u,0, see Fig. 6.
Theseu values are the analogs of the two oppositely bias
states in the basic model. Transitions between differ
angles occur as a result of rotational diffusion. Because
symmetry, positive and negativeu values are equally likely
and the resulting average drift is zero. The crucial obser
tion is now that the application of an additional electric fie
along thex axis will favor the internal stateu that is charac-
terized by a motion induced by the gravitational field in t
opposite direction; hence, negative mobility is expected
this effect is larger than the direct response to the elec
force.

APPENDIX

The time evolution of the probabilityP[ i ,s,I ] (t) is de-
scribed by the following master equation:

] tP[1,1,I ]~ t !52~k←
1 1k→

1 !P[1,1,I ]~ t !1k→
1 P[3,1,I 21]~ t !

1k←
1 P[2,1,I ]~ t !1g@P[1,0,I ]~ t !2P[1,1,I ]~ t !#,

] tP[2,1,I ]~ t !52~k←
1 1k→

1 !P[2,1,I ]~ t !1k→
1 P[1,1,I ]~ t !

1k←
1 P[3,1,I ]~ t !,

FIG. 5. The arrows represent the hydrodynamic flow in wh
the suspended particles, represented by the dots, move. Upon a
cation of an external force on these particles, for example, in
1x direction, transitions to the lower layer are more likely, resu
ing in negative mobility if the flow is sufficiently strong.

FIG. 6. The application of an additional electric fieldEW induces
preferential transitions to the configurations that move in the op
site direction.
1-3
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] tP[3,1,I ]~ t !52~k←
1 1k→

1 !P[3,1,I ]~ t !1k→
1 P[2,1,I ]~ t !

1k←
1 P[1,1,I 11]~ t !,

] tP[1,0,I ]~ t !52k→
0 P[1,0,I ]~ t !1k←

0 P[2,0,I ]~ t !1g@P[1,1,I ]~ t !

2P[1,0,I ]~ t !#,

] tP[2,0,I ]~ t !52~k←
0 1k→

0 !P[2,0,I ]~ t !1k→
0 P[1,0,I ]~ t !

1k←
0 P[3,0,I ]~ t !,

] tP[3,0,I ]~ t !52k←
0 P[3,0,I ]~ t !1k→

0 P[2,0,I ]~ t !1g@P[3,2,I ]~ t !

2P[3,0,I ]~ t !#,

] tP[1,2,I ]~ t !52~k←
2 1k→

2 !P[1,2,I ]~ t !1k→
2 P[3,2,I 21]~ t !

1k←
2 P[2,2,I ]~ t !,

] tP[2,2,I ]~ t !52~k←
2 1k→

2 !P[2,2,I ]~ t !1k→
2 P[1,2,I ]~ t !

1k←
2 P[3,2,I ]~ t !,

] tP[3,2,I ]~ t !52~k←
2 1k→

2 !P[3,2,I ]~ t !1k→
2 P[2,2,I ]~ t !

1k←
2 P[1,1,I 11]~ t !1g@P[3,0,I ]~ t !

2P[3,2,I ]~ t !#. ~A1!

Summing both sides of the master equation overI yields a
closed set of nine coupled equations for the reduced p
abilities P[ i ,s] (t)5( I P[ i ,s,I ] (t). The latter quantities ap
proach steady state values in the long time limitt→`. In
particular, the total net probability flux between the horizo
tal layers must vanish, implying

P[1,1]5P[1,0] and P[3,0]5P[3,2] . ~A2!

With these conditions, the set of nine equations decouple
three independent sets, one for each layer. Their unique
lution is found by including the condition( i P[ i ,s]5Ps . The
latter can be determined by using Eq.~A2! and the overall
normalization (sPs51. This procedure can also be r
ta

e

.
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peated for more complex spatially periodic structures incl
ing the calculation of both asymptotic velocity and diffusio
coefficient, cf. Ref.@8#.

For a continuous space, we proceed in a similar way. T
probability P[x,s,I ] (t) obeys the master equation

] tP[x,1,I ]~ t !52]xJ[x,1,I ]~ t !1r [x,1,I ]~ t !,

] tP[x,0,I ]~ t !52]xJ[x,0,I ]~ t !2r [x,1,I ]~ t !2r [x,2,I ]~ t !,

] tP[x,2,I ]~ t !52]xJ[x,2,I ]~ t !1r [x,2,I ]~ t !, ~A3!

whereJ[x,s,I ] (t) is the probability current in states,

J[x,s,I ]~ t !52@]xVs~x!2F1kBT]x#P[x,s,I ]~ t ! ~A4!

andr [x,6,I ] (t) is the net probability flux from state 0 to sta
6 at positionx1IL , as a result of the localized transition
between the different states:

r [x,1,I ]~ t !5gd~x2x0!@P[x0,0,I ]~ t !2P[x0 ,1,I ]~ t !#,

r [x,2,I ]~ t !5gd~x2x1!@P[x1,0,I ]~ t !2P[x1 ,2,I ]~ t !#.
~A5!

As before,P[x,s]5 lim
t→`

( I P[x,s,I ] (t) is found by summing

both sides of the master equation overI, and taking the limit
t→`. The total net fluxesr [x,6]5 lim

t→`
( I r [x,6,I ] (t) must

vanish, so that

P[x0,0]5P[x0 ,1] and P[x1,0]5P[x1 ,2] . ~A6!

The result forP[x,s] reads

P[x,s]5Ps

Fs~x!

E
0

L

Fs~y!dy

, ~A7!

whereFs(x) andPs are given in Eqs.~10! and~11!, respec-
tively. Finally, Js is obtained from

Js52@]xVs~x!2F1kBT]x#P[x,s] , ~A8!

leading to the result given in Eq.~10!.
h-
@1# H. Callen,Thermodynamics and an Introduction to Thermos
tistics ~Wiley, New York, 1985!.

@2# R. King, Integrated Electronic Circuits and Systems~Van Nos-
trand Reinhold, Berkshire, 1983!.
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